• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Z-Flipons: How Specific DNA Regions Help Regulate Gene Function

Z-Flipons: How Specific DNA Regions Help Regulate Gene Function

© iStock

Researchers at HSE University and InsideOutBio have applied machine learning to identify the location and functions of mirror-twisted DNA structures, known as Z-flipons, in human and mouse genomes. The scientists discovered which Z-DNA regions were conserved in both species throughout evolution and demonstrated for the first time that Z-DNA accelerates the process of creating RNA copies of genes. The findings will contribute to the development of new treatments for genetic diseases. The study has been published in Scientific Reports.

The structure of a DNA molecule—a double helix resembling a spiral staircase—might be familiar to many from their high school days. The 'steps' of this staircase are made up of pairs of nitrogenous bases, while the 'railings' consist of alternating chains of sugar and phosphate groups. Typically, the DNA strand twists to the right, but certain regions can temporarily twist to the left, playing a role in regulating gene activity. Due to their resemblance to the letter Z, these regions are referred to as Z-flipons. 

A team of researchers from the International Laboratory of Bioinformatics at the AI and Digital Science Institute of the HSE Faculty of Computer Science and InsideOutBio analysed the human and mouse genomes to predict the locations of Z-flipons and determine their functions. To achieve this, the scientists examined whether the Z-DNA segment is conserved across different species throughout evolution; if the segment remains unchanged, it indicates its importance to the organism's function and survival.

The researchers used the previously developed DeepZ deep learning system that considered not only information from the linear DNA sequence but also data from tens of thousands of Omix experiments. This included, for example, information about epigenetic tags—chemical markers on DNA or proteins that help regulate gene activity without altering the DNA structure itself. Additionally, the scientists incorporated data on the transition energy required for a DNA region to alter its structure. Two machine learning models were developed using this data: one for humans and one for mice. Afterward, the trained model 'scanned' the entire genome, identifying areas with a high probability of Z-DNA regions. The model predictions were compared, and then the regions conserved in both the human and mouse genomes were identified. 

The researchers were able to structure data on the locations of Z-flipons in the mouse and human genomes and identify the genes in which they are found. The scientists have demonstrated that Z-flipons are conserved elements which are shared by different organisms and persist throughout evolution. By applying clustering, the researchers discovered that Z-flipons are grouped by function: some are involved in transcription regulation, while others play a role in the formation of chromatin—the 'packaging' of DNA within the cell. This confirms that Omix features do indeed determine the functional class of Z-flipons, which is crucial for understanding their role.

Also, for the first time, the scientists discovered and statistically demonstrated that Z-flipons accelerate the initiation of transcription, the process of creating RNA copies of genes. This feature enables cells to adapt more quickly to changes, which is particularly important for genes involved in the development of the nervous system and in other critical processes.  

'To create a copy of a gene, RNA polymerase must bind to a specific DNA region and produce an RNA copy. If many copies are needed, multiple "photocopying machines" attach to the region simultaneously. However, the mechanism is slightly different: instead of repeatedly copying one page, there is a single "book"—a DNA sequence—to be copied. Small "photocopying machines" are deployed along the "book," each moving along the DNA and creating a copy. To produce more copies, it is essential for each new "copying machine" to attach immediately after the previous one finishes its work. The frequency at which new copies are initiated is called the rate of transcription initiation,' explains Maria Poptsova, co-author of the paper and Head of the International Laboratory of Bioinformatics of the HSE Faculty of Computer Science. 

The team at the International Laboratory of Bioinformatics has developed a website that hosts machine learning-based algorithms for data analysis, as well as whole-genome annotations—detailed information about the functional elements of the genome.

See also:

Russian Scientists Develop New Compound for Treating Aggressive Tumours

A team of Russian researchers has synthesised a novel compound for boron neutron capture therapy (BNCT), a treatment for advanced cancer that uses the boron-10 isotope. The compound exhibits low toxicity, excellent water solubility, and eliminates the need for administering large volumes. Most importantly, the active substance reaches the tumour with minimal impact on healthy tissues. The study was published in the International Journal of Molecular Sciences shortly before World Cancer Day, observed annually on February 4.

Scientists Discover Link Between Brain's Structural Features and Autistic Traits in Children

Scientists have discovered significant structural differences in the brain's pathways, tracts, and thalamus between children with autism and their neurotypical peers, despite finding no functional differences. The most significant alterations were found in the pathways connecting the thalamus—the brain's sensory information processing centre—to the temporal lobe. Moreover, the severity of these alterations positively correlated with the intensity of the child's autistic traits. The study findings have been published in Behavioural Brain Research.

Earnings Inequality Declining in Russia

Earnings inequality in Russia has nearly halved over the past 25 years. The primary factors driving this trend are rising minimum wages, regional economic convergence, and shifts in the returns on education. Since 2019, a new phase of this process has been observed, with inequality continuing to decline but driven by entirely different mechanisms. These are the findings made by Anna Lukyanova, Assistant Professor at the HSE Faculty of Economic Sciences, in her new study. The results have been published in the Journal of the New Economic Association.

Russian Physicists Discover Method to Increase Number of Atoms in Quantum Sensors

Physicists from the Institute of Spectroscopy of the Russian Academy of Sciences and HSE University have successfully trapped rubidium-87 atoms for over four seconds. Their method can help improve the accuracy of quantum sensors, where both the number of trapped atoms and the trapping time are crucial. Such quantum systems are used to study dark matter, refine navigation systems, and aid in mineral exploration. The study findings have been published in the Journal of Experimental and Theoretical Physics Letters.

HSE Scientists Develop Application for Diagnosing Aphasia

Specialists at the HSE Centre for Language and Brain have developed an application for diagnosing language disorders (aphasia), which can result from head injuries, strokes, or other neurological conditions. AutoRAT is the first standardised digital tool in Russia for assessing the presence and severity of language disorders. The application is available on RuStore and can be used on mobile and tablet devices running the Android operating system.

HSE Researchers Discover Simple and Reliable Way to Understand How People Perceive Taste

A team of scientists from the HSE Centre for Cognition & Decision Making has studied how food flavours affect brain activity, facial muscles, and emotions. Using near-infrared spectroscopy (fNIRS), they demonstrated that pleasant food activates brain areas associated with positive emotions, while neutral food stimulates regions linked to negative emotions and avoidance. This approach offers a simpler way to predict the market success of products and study eating disorders. The study was published in the journal Food Quality and Preference.

Russian Scientists Demonstrate How Disorder Contributes to Emergence of Unusual Superconductivity

Researchers at HSE University and MIPT have investigated how the composition of electrons in a superconductor influences the emergence of intertype superconductivity—a unique state in which superconductors display unusual properties. It was previously believed that intertype superconductivity occurs only in materials with minimal impurities. However, the scientists discovered that the region of intertype superconductivity not only persists but can also expand in materials with a high concentration of impurities and defects. In the future, these superconductors could contribute to the development of highly sensitive sensors and detectors. The study has been published in Frontiers of Physics.

HSE Scientists Take Important Step Forward in Development of 6G Communication Technologies

Researchers at HSE MIEM have successfully demonstrated the effective operation of a 6G wireless communication channel at sub-THz frequencies. The device transmits data at 12 Gbps and maintains signal stability by automatically switching when blocked. These metrics comply with international 6G standards. An article published on arXiv, an open-access electronic repository, provides a description of certain elements of the system.

AI vs AI: Scientists Develop Neural Networks to Detect Generated Text Insertions

A research team, including Alexander Shirnin from HSE University, has developed two models designed to detect AI-generated insertions in scientific texts. The AIpom system integrates two types of models: a decoder and an encoder. The Papilusion system is designed to detect modifications through synonyms and summarisation by neural networks, using one type of models: encoders. In the future, these models will assist in verifying the originality and credibility of scientific publications. Articles describing the Papilusion and AIpom systems have been published in the ACL Anthology Digital Archive.

Acoustic Battles for the Harem: How the Calls of Siberian Wapiti Reveal Their Status and Individuality

Researchers at HSE University, Lomonosov Moscow State University, and the A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences have studied the distinctive vocalisations of Siberian wapiti (Cervus canadensis sibiricus) stags during the peak of the mating season, when males produce rutting calls (bugles) to attract females (hinds) and deter rivals. The scientists have discovered how the acoustic parameters of these rutting calls reflect the stag's status—whether he currently holds a harem or is still attempting to acquire one—as well as his individual characteristics. The study has been published in Journal of Zoology.