Russian Scientists Demonstrate How Disorder Contributes to Emergence of Unusual Superconductivity
Researchers at HSE University and MIPT have investigated how the composition of electrons in a superconductor influences the emergence of intertype superconductivity—a unique state in which superconductors display unusual properties. It was previously believed that intertype superconductivity occurs only in materials with minimal impurities. However, the scientists discovered that the region of intertype superconductivity not only persists but can also expand in materials with a high concentration of impurities and defects. In the future, these superconductors could contribute to the development of highly sensitive sensors and detectors. The study has been published in Frontiers of Physics.
In ordinary materials, there is always at least some resistance, a property that hinders the flow of electric current and results in energy loss. However, certain materials, when cooled to extremely low temperatures, transition into a state where resistance is entirely eliminated. This state is known as superconductivity, and the materials exhibiting it are called superconductors.
When a material enters a superconducting state, it completely expels external magnetic fields, such as those generated by electromagnets or current-carrying conductors. However, if the external magnetic field becomes too strong, the superconductor loses its properties and reverts to its normal state.
Superconductors are traditionally classified into two types. Their classification into type I or type II depends on the material's behaviour in a magnetic field and the value of the Ginzburg–Landau parameter, which, in turn, depends on the material's characteristics as well as the presence of impurities and defects. If it is below a certain value, the material is classified as a type I superconductor; if it is above that value, it is classified as a type II superconductor. In type I superconductors, the magnetic field is expelled from the material until its intensity reaches a critical value. After that, the field penetrates the material, and superconductivity is lost. In type II superconductors, the situation is different: the magnetic field begins to penetrate once the field strength exceeds a minimum threshold, but superconductivity is maintained. The field penetrates in the form of vortices—narrow current-carrying tubes, within which a magnetic field is present. These vortices form an ordered lattice structure.
However, there is a narrow region around the critical value of the Ginzburg–Landau parameter where superconductivity exhibits intermediate properties between type I and type II. This state is known as intertype superconductivity. Unusual magnetic field configurations differing from lattices arise in this state, including vortex clusters, chains, and giant vortices, which give rise to new magnetic properties distinct from the classical ones.
Initially, intertype superconductivity was observed only in pure superconductors with minimal impurities. However, a recent study by scientists at the HSE MIEM Centre for Quantum Metamaterials and the MIPT Centre for Advanced Methods of Mesophysics and Nanotechnology revealed that the region of intertype superconductivity is maintained in superconductors with a high concentration of impurities and defects. This is possible in multiband superconductors, where multiple 'types' of electrons with different properties coexist. Electrons from different energy bands respond differently to impurities: some are more affected, while others are less so. Moreover, the extent of interaction with impurities can be controlled, for instance, by irradiating the material with ions, which allows for the expansion of the intertype superconductivity region.
The scientists' findings contribute to the current understanding of superconductivity types and how their properties change under different conditions. This is crucial for the effective use of superconductors in cables and high-power magnets, as the current and magnetic properties of a superconductor depend on its type. It is also valuable for the development of new, highly sensitive devices.
'The study broadens our understanding of superconductivity and the classical classification of superconductors, which has been around for about 70 years. We have shown that the combination of disorder and multiband effects fundamentally alters the properties of superconductors and opens up the possibility of exploring rare and exotic superconducting states. Since the magnetic field configurations in intertype superconductivity are sensitive to temperature and current parameters, such superconductors could be used in highly sensitive sensors and detectors in the future,' according to Pavel Marychev, Research Fellow at the HSE Centre for Quantum Metamaterials.
See also:
HSE Scientists Take Important Step Forward in Development of 6G Communication Technologies
Researchers at HSE MIEM have successfully demonstrated the effective operation of a 6G wireless communication channel at sub-THz frequencies. The device transmits data at 12 Gbps and maintains signal stability by automatically switching when blocked. These metrics comply with international 6G standards. An article published on arXiv, an open-access electronic repository, provides a description of certain elements of the system.
AI vs AI: Scientists Develop Neural Networks to Detect Generated Text Insertions
A research team, including Alexander Shirnin from HSE University, has developed two models designed to detect AI-generated insertions in scientific texts. The AIpom system integrates two types of models: a decoder and an encoder. The Papilusion system is designed to detect modifications through synonyms and summarisation by neural networks, using one type of models: encoders. In the future, these models will assist in verifying the originality and credibility of scientific publications. Articles describing the Papilusion and AIpom systems have been published in the ACL Anthology Digital Archive.
Acoustic Battles for the Harem: How the Calls of Siberian Wapiti Reveal Their Status and Individuality
Researchers at HSE University, Lomonosov Moscow State University, and the A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences have studied the distinctive vocalisations of Siberian wapiti (Cervus canadensis sibiricus) stags during the peak of the mating season, when males produce rutting calls (bugles) to attract females (hinds) and deter rivals. The scientists have discovered how the acoustic parameters of these rutting calls reflect the stag's status—whether he currently holds a harem or is still attempting to acquire one—as well as his individual characteristics. The study has been published in Journal of Zoology.
Z-Flipons: How Specific DNA Regions Help Regulate Gene Function
Researchers at HSE University and InsideOutBio have applied machine learning to identify the location and functions of mirror-twisted DNA structures, known as Z-flipons, in human and mouse genomes. The scientists discovered which Z-DNA regions were conserved in both species throughout evolution and demonstrated for the first time that Z-DNA accelerates the process of creating RNA copies of genes. The findings will contribute to the development of new treatments for genetic diseases. The study has been published in Scientific Reports.
HSE Researchers Develop Python Library for Analysing Eye Movements
A research team at HSE University has developed EyeFeatures, a Python library for analysing and modelling eye movement data. This tool is designed to simplify the work of scientists and developers by enabling them to efficiently process complex data and create predictive models.
Scientists Identify Fifteen Key Motives Driving Human Behaviour
Researchers at HSE University and the London School of Hygiene and Tropical Medicine have identified 15 key motives that drive human behaviour. By analysing people's views, preferences, and actions through an evolutionary lens, they demonstrated how these motives intertwine to shape habits and interpersonal relationships. The findings have been published in Personality and Individual Differences.
HSE Neurolinguists Create Russian Adaptation of Classic Verbal Memory Test
Researchers at the HSE Centre for Language and Brain and Psychiatric Hospital No. 1 Named after N.A. Alexeev have developed a Russian-language adaptation of the Rey Auditory Verbal Learning Test. This classic neuropsychological test evaluates various aspects of auditory verbal memory in adults and is widely used in both clinical diagnostics and research. The study findings have been published in The Clinical Neuropsychologist.
Tickling the Nerves: Why Crime Content is Popular
Consumers of content about serial killers watch and read it to experience intense emotions that are often lacking in everyday life and to understand the reasons that drive people to commit crimes. However, such content does not contribute to increased aggression. These conclusions were drawn by sociologists from HSE University. The results of their study have been published in Crime, Media, Culture: An International Journal.
HSE Researchers Prove the Existence of Nash Equilibrium for a New Class of Problems in Game Theory
Researchers at HSE University's St Petersburg School of Economics and Management have been exploring methods for the efficient allocation of resources in systems involving multiple players. The scientists have proven the existence of strategies for optimal decision-making in competition for limited, discrete resources in four different cases. The developed mathematical model can be applied in various fields, ranging from education and medicine to managing networks and computing power. The paper has been published in Games and Economic Behaviour.
Researchers at HSE Centre for Language and Brain Reveal Key Factors Determining Language Recovery in Patients After Brain Tumour Resection
Alina Minnigulova and Maria Khudyakova at the HSE Centre for Language and Brain have presented the latest research findings on the linguistic and neural mechanisms of language impairments and their progression in patients following neurosurgery. The scientists shared insights gained from over five years of research on the dynamics of language impairment and recovery.